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A note on estimating drift and diffusion parameters from timeseries
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Abstract

Estimating the deterministic drift and stochastic diffusion parameters from discretely sampled data is fraught with the
potential for error. We derive a simple way of estimating the error due to the finite sampling rate in these parameters for a
univariate system using a straightforward application of the Itô–Taylor expansion. The error is calculated up to first order in
the finite sampling time increment�t . We then compare the approximate results with the analysis of numerically generated
timeseries where the answer is known. Furthermore, a meteorological real world example is discussed.
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this Letter we consider a univariate Itô stochastic
differential equation (SDE) of the form

(1)dx = A(x) dt + B(x) dW,

whereA(x) andB(x) are known functions, andW de-
notes a Wiener process. For sufficiently smooth and
boundedA(x) andB(x) the probability density func-
tion p(x, t) (PDF) of the Itô SDE (1) is governed by
the corresponding Itô–Fokker–Planck equation [1–3],
which reads

∂p(x, t)

∂t
= − ∂

∂x
A(x)p(x, t)

(2)+ 1

2

∂2

∂x2B(x)2p(x, t).
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For a detailed discussion of stochastic integration and
the differences between Itô and Stratonovich SDEs
see, for example, [1,2]. To briefly summarize, the
Stratonovich calculus best represents situations where
rapidly fluctuating quantities with small but finite cor-
relation times are parameterized as white noise. The
Itô stochastic calculus is used when discrete uncor-
related fluctuations are approximated as continuous
white noise. That means continuous physical systems
are normally described by the Stratonovich calculus,
whereas, for example, the financial market is best
modeled by the Itô calculus [3]. Nevertheless, in the
Itô interpretation the deterministic termA(x) can sim-
ply be interpreted as the so-called “effective drift”,
which is the sum of the deterministic and the noise-
induced drift in Stratonovich systems.

Suppose we wish to model an observed, univariate
discrete timeseriesx(ti) using the SDE (1). For para-
metric estimation ofA(x) andB(x), that is if one spec-
ifies the functional form ofA(x) andB(x) in advance,
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Maximum Likelihood Estimate (MLE) methods are
usually preferred [4]. However, we concern ourselves
with non-parametric estimates ofA(x) andB(x) ob-
tained by binning the data inx. Then deterministic and
stochastic parts can be determined directly from data
by simply using their definition [5–8]:

(3)A(x) = lim
�t→0

1

�t
〈X(t + �t) − x〉

∣∣∣∣
X(t)=x

,

(4)B(x)2 = lim
�t→0

1

�t

〈
(X(t + �t) − x)2〉∣∣∣∣

X(t)=x

,

where X(t + �t) is a solution, that is, a single
stochastic realization of the SDE (1), that starts at
X(t) = x at time t . 〈· · ·〉 denotes the averaging
operator. At every pointx in the state space spanned by
the data whose neighborhood is visited often enough
by the trajectory, deterministic and stochastic parts
of the underlying dynamics can be estimated. These
formulae are the embodiment of the property that the
deterministic dynamics are proportional to�t and the
stochastic term to

√
�t . Note that the definitions are

only correct in the limit�t → 0. In order to verify the
results, the estimated functionsA(x) and B(x)2 can
be inserted into the Fokker–Planck equation (2), and
the resulting PDF predicted by (2) can be compared
with the PDF obtained directly from the data. In the
multivariate case the stochastic component is given
by a matrixB̃(�x), andB̃(�x)B̃T (�x) is estimated from
data. In general, it is impossible to find a unique
expression forB̃(�x) in the multivariate case, because
it is not guaranteed that̃B(�x) is invertible. However,
in the univariate caseB(x) =

√
B(x)2. The sign of

the square root is arbitrary becauseB(x) is multiplied
by Gaussian white noise with zero mean. Thus, in
the univariate case the SDE (1) can be used to test
the estimates ofA(x) andB(x) by simply comparing
the properties (e.g., moments, spectra, etc.) of the
original time series with the properties of the time
series obtained by integrating (1).

In the analysis of observed data, in particular in
meteorology and other geophysical applications, one
is often given a finite time increment�t that is a
bit too large for comfort; either through historical
practice or economic necessity. This timestep may be
of the order of 1/4 of the fastest timescale of the
deterministic system. In this Letter we derive a simple
way of estimating the error in the finite-difference

approximations ofA(x) and B(x)2 for a univariate
system using a straightforward application of the
Itô–Taylor expansion. In Section 2 the Itô–Taylor
expansion is performed and discussed. In Section 3.1
we then compare the approximate results with the
analysis of numerically generated timeseries where the
answer is known. Furthermore, a meteorological real
world example is discussed in Section 3.2. Finally,
Section 4 provides a summary and a discussion.

2. Stochastic Itô–Taylor expansion

The definitions ofA(x) and B(x)2 given by (3)
and (4) are only correct in the limit�t → 0. For a
given time increment�t the finite-difference approxi-
mationsÃ(x) andB̃(x)2 become

(5)Ã(x) = 1

�t
〈X(t + �t) − x〉

∣∣∣∣
X(t)=x

,

(6)B̃(x)2 = 1

�t

〈
(X(t + �t) − x)2〉∣∣∣∣

X(t)=x

.

To estimate the error made by using a finite time
increment �t , X(t + �t) can be expanded in a
stochastic Itô–Taylor series [4]. Because we want to
keep only the terms in the expansion that lead to terms
of the order�t in Ã(x) andB̃(x)2, the weak (omitting
triple stochastic integrals) Itô–Taylor approximation
up to the order�t2 is sufficient:

X(t + �t) = X(t) + AI(0) + BI(1)

+
(

AA′ + 1

2
B2A′′

)
I(0,0)

+
(

AB ′ + 1

2
B2B ′′

)
I(0,1)

+ BA′I(1,0) + BB ′I(1,1)

(7)+ residual.

The Itô integralsI(i,j) are defined as in [4]:

I(0) =
t+�t∫
t

dt ′, I(1) =
t+�t∫
t

dW(t ′),

I(0,0) =
t+�t∫
t

s∫
t

dt ′ ds, I(0,1) =
t+�t∫
t

s∫
t

dt ′ dW(s),
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I(1,0) =
t+�t∫
t

s∫
t

dW(t ′) ds,

I(1,1) =
t+�t∫
t

s∫
t

dW(t ′) dW(s).

Inserting the expansion ofX(t + �t) in (5) and (6),
and keeping the terms up the order�t yields the finite-
difference estimates̃A andB̃2:

Ã = 1

�t
〈X(t + �t) − x〉

∣∣∣∣
X(t)=x

(8)= A +
(

AA′

2
+ B2A′′

4

)
�t + O

(
�t2),

B̃2 = 1

�t

〈
(X(t + �t) − x)2〉∣∣∣∣

X(t)=x

(9)

= B2 +
(

A2 + B2A′ + BAB ′

+ 1

2

(
B2B ′2 + B3B ′′))�t + O

(
�t2).

Note that the formulae (8) and (9) can also be de-
rived from the Fokker–Planck equation as in [9]. From
(8) and (9) one can calculate the expected error for
a given finite time increment ifA(x) and B(x) are
known. Note that, of course, for�t → 0 the esti-
matesÃ(x) and B̃(x)2 converge toA(x) andB(x)2.
Other techniques to calculate the errors are proposed
by [9,10]. The errors inÃ(x) and B̃(x)2 depend on
nonlinear combinations ofA(x), B(x) and the corre-
sponding derivatives. Unfortunately, this implies that
it is very hard to obtain general analytical expres-
sions for the errors under consideration. Nevertheless,
it can be seen immediately from (9) that it is prob-
lematic to detect the additive noise in an Ornstein–
Uhlenbeck process with a finite time step. For ex-
ample, if dx = −ax dt + b dW , wherea = b = 1,
and�t = 1/4, a significant parabolic error emerges:
B̃2 = 3/4+ 1/4x2. It should be noted that an error in
the estimate of the linear term will induce a quadratic
error inB2 as well as a constant offset inB.

Because it is impossible to knowA(x) and B(x)

in advance, the most practical way to detect the error
made by using a finite time step is to change�t

by subsampling the given timeseries and compare

the results. Ref. [11] suggests a method based on
Richardson extrapolation, whereby (5) and (6) are
evaluated at time increments of�t , 2�t , etc., and
combined so as to cancel out successive terms in the
stochastic Taylor series. Another, more accurate way
to correct the error might be to solve the coupled
second-order differential equations (8) and (9) for
A(x) andB(x) for the given numerical estimates̃A(x)

and B̃(x). Nevertheless, this imposes the problem to
accurately specifyA(x), A′(x), B(x), andB ′(x) for
an arbitraryx = x0.

A pedagogical example

Often the following straightforward, but in general
wrong calculation is made to account for the errors
in (5) and (6). Thereby, the stochastic Euler scheme
(the weak Itô–Taylor approximation up to the order
�t) X(t + �t) − x = A(x)�t + B(x) dW is used to
approximate (1), and is then inserted in (5) and (6):

Ã = 1

�t
〈X(t + �t) − x〉

∣∣∣∣
X(t)=x

= 1

�t
〈A�t + B dW 〉

(10)= A,

B̃2 = 1

�t

〈
(X(t + �t) − x)2〉∣∣∣∣

X(t)=x

= 1

�t

〈
(A�t + B dW)2〉

(11)= B2 + A2�t.

Because of the error term in (11), it could falsely be
suggested that the finite-difference estimation of the
diffusion term is given by the formula

B2 = B̃2

(12)= 1

�t

〈(
X(t + �t) − x − Ã�t

)2〉∣∣∣∣
X(t)=x

,

in order to numerically obtain the correct diffusion
term B(x)2. Nevertheless, in light of the stochastic
Taylor expansion performed previously, (12) omits
several terms of order�t . Even in the case of lin-
earA and constantB (Ornstein–Uhlenbeck process)
mentioned above, there is one term missing from the
estimates of bothA andB. The entire calculation is
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flawed by the fact that for finite time steps�t the sto-
chastic Euler approximation used to obtain (10) and
(11) is in generalnotan accurate approximation of the
original SDE (1). The Euler scheme obviously corre-
sponds to the truncated Itô–Taylor series (7) contain-
ing only the single time and Wiener integralsI(0) and
I(1). For finite time steps�t the Euler scheme only
gives good results when the drift and diffusion coeffi-
cients are nearly constant [4].

3. Examples

To qualitatively study the errors made by calcu-
lating the finite-difference estimates̃A and B̃2 from
timeseries, known functionsA(x) and B(x) are in-
serted into the error estimates (8) and (9) to calcu-
late the theoretically expected errorsÃ(x) −A(x) and
B̃(x) − B(x). We then compare the theoretical results
with the analysis of numerically generated timeseries.
This is done by using the formulae (5) and (6) to cal-
culateÃ and B̃2 from the data obtained by integrat-
ing the SDE (1) with the prescribed functionsA(x)

andB(x). The SDE (1) is numerically solved by the
stochastic Milstein scheme [4], and is integrated for
250 000 time units�t , whereby each time unit is di-
vided into 40 time steps. Every 10th time step is saved
to obtain an artificial timeseries with the increment
�t = 0.25. Thus, in the following the finite time step
is set to�t = 0.25. Finally, a relevant meteorological
real world example is discussed.

3.1. Artificial functions

3.1.1. A = −x; B = 1, B = |x|+ 0.1, B = 0.1x2 + 1
Firstly, a linear deterministic damping termA = −x

is used in combination with three different stochastic
terms:B = 1, B = |x| + 0.1, andB = 0.1x2 + 1. The
results are shown in Fig. 1. In general, the theoretical
estimates (8) and (9) coincide very well with numeri-
cally obtained functions. Only for large values ofx the
first-order approximations are slightly different from
the numerical results. Furthermore, the numerical es-
timates for largex are more noisy than the points
near the origin, because these border points are vis-
ited rarely by the trajectory, and, therefore, the numer-
ical estimates for a finite timeseries are more uncertain
there than near the origin. From (8) it can be deduced

that for a linearA(x), Ã(x) does not depend onB(x).
Thus,Ã(x) is the same in all of the three examples. It
can be seen that a linear damping term is captured rel-
atively well by the finite-difference approximation (8).
Nevertheless, it is rather problematic to detect pure ad-
ditive noise(B = 1) using a finite step�t = 0.25 in
(9) because a significant parabolic error emerges (see
Fig. 1(a)). The termA2 + B2A′ = x2 − 1 is the only
remaining error term in (9). Pure additive noise can
only detected with very small time increments�t . The
method is much more successful in detecting a linear
noise termB = |x| + 0.1 (Fig. 1(b)), as long as the
additive part inB is not too large. Then, the leading
error termsA2 andB2A′ cancel each other. Neverthe-
less, for a much larger additive component the terms
A2 andB2A′ do not cancel each other any more, and
evenBAB ′ contributes to the error. In Fig. 1(c) it is
shown that is even problematic do detect a weak par-
abolic multiplicative noise term (B = 0.1x2 + 1).

3.1.2. A = −0.1x3; B = 1, B = |x| + 0.1,

B = 0.1x2 + 1
Secondly, a nonlinear deterministic damping term

A = −0.1x3 is used in combination with the three
different stochastic terms:B = 1, B = |x| + 0.1, and
B = 0.1x2 + 1. The results are shown in Fig. 2. It
is important to note that in contrast to the previous
examples with a linear deterministic damping term,
Ã(x) now depends on the structure of the deterministic
term A(x) and the stochastic termB(x), because
B2A′′ �= 0. Again, the theoretical estimates (8) and
(9) coincide very well with the numerically obtained
functions (with minor exceptions for large values of
x, as already discussed). Fig. 2(a) shows that the
deterministic and the constant noise term(B = 1) are
relatively well captured in the case of the nonlinear
damping. This behavior is due to the fact thatA

and A′ are small for not too large values ofx. The
same holds for the other two examples presented in
Figs. 2(b),(c). There, the deterministic and stochastic
functions are relatively well captured by the finite-
difference estimates, as long asx is not too large. This
behavior highlights the fact that the errors iñA(x)

and B̃(x) depend on nonlinear combinations of both
A(x) andB(x) (and its derivatives). In particular, the
quality of the estimatẽB depends on the structure of
the deterministic term.
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Fig. 1. Error estimates of the finite-difference (�t = 0.25) approximationsÃ(x) (left) andB̃(x) (right) in the case ofA = −x and (a)B = 1,
(b) B = |x|+0.1, (c)B = 0.1x2+1.A(x), B(x): solid line;Ã(x), B̃(x): dashed line;Ã(x)−A(x), B̃(x)−B(x): dotted line. The corresponding
numerical estimates are indicated by the ‘+’ signs.

3.2. Real world data

The synoptic variability of midlatitude sea surface
winds (obtained from 6 hourly scatterometter obser-
vations) can be well described by a univariate SDE
[12]. As a representative result from [12] the nu-
merically estimated functions̃A(x) and B̃(x) for the
(normalized) zonally averaged zonal wind at 50◦S
are shown in Fig. 3. The dimensional zonally aver-
aged zonal wind speed is̄u = 6.6 m s−1. The corre-

sponding zonally averaged standard deviation isσ̄u =
5.7 m s−1. Ã(x) andB̃(x) are approximated by fourth-
order polynomial fits:

Ã(x) =
4∑

i=0

aix
i, B̃(x) =

4∑
i=0

bix
i.

Near the origin the deterministic part consists of a
nearly linear damping term with a damping time
scale of about 1.5 days. For higher wind speeds the
damping time scale is about 0.5 days. More impor-
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Fig. 2. Error estimates of the finite-difference (�t = 0.25) approximations̃A(x) (left) andB̃(x) (right) in the case ofA = −0.1x3 and (a)B = 1,
(b) B = |x|+0.1, (c)B = 0.1x2+1.A(x), B(x): solid line;Ã(x), B̃(x): dashed line;Ã(x)−A(x), B̃(x)−B(x): dotted line. The corresponding
numerical estimates are indicated by the ‘+’ signs.

tantly, a proper description of the winds requires a
state-dependent white noise term, that is, multiplica-
tive noise. The need for a parabolic multiplicative
noise term to describe the variability of the midlati-
tude winds can be qualitatively interpreted by the fact
that the variability (gustiness) of midlatitude winds
increases with increasing wind speed. Moreover, the
method used reveals another remarkable character-
istic of the underlying timeseries: the variability of
westward and eastward winds decreases for increasing

wind speeds, until the winds exceed a certain thresh-
old value. This behavior may be understood in terms
of an instability mechanism in the presence of friction.

In the light of the discussion in Section 3.1, one
might ask if the results from [12], in particular, the
structure of the multiplicative noise, are only due to the
error terms in (8) and (9). Because it is impossible to
know the structure of the noise termB(x) in advance,
the most practical way to detect the error made by
using a finite time step is to change�t by subsampling
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Fig. 3. (a) The estimated deterministic drift̃A(x) and (b) the
estimated noisẽB(x) for the zonal wind at 50◦S (Southern Ocean).
The dashed line with circles shows the actual estimated function, the
solid line is a fourth-order polynomial fit.

the data and compare the results. This has been done,
and it appears that the error is neglectable for�t =
6,12, and 18 h for midlatitude winds. The estimates
of B(x) begin to diverge for time steps equal to or
larger than 24 h. Thus, the multiplicative noise found
in the midlatitude wind data is not a spurious result. To
test the numerically estimated functionsÃ andB̃ for
consistency, we assume that the estimated functions
are actually correct. Then, the “correct” estimates are
inserted in (8) and (9). If the estimates are consistent
with the analytical error estimation, the error terms in
(8) and (9) should be small. This has been done with
the numerical estimates, and the results are shown in
Fig. 4. The error is indeed relatively small. That is,

Fig. 4. Consistency check of the finite-difference(�t = 0.25)
approximations in the case of observed data: (a)A(x) and (b)B(x)

(solid lines). The theoretically predicted functions (a)Ã(x) and (b)
B̃(x) are indicated by the dashed lines. The errors (a)Ã(x) − A(x)

and (b)B̃(x) − B(x) are indicated by the dotted lines.

the estimates of̃A andB̃ are consistent with the error
formulae.

4. Summary and conclusions

In this Letter we derived a simple way of calculat-
ing the errors induced by a finite sampling rate in the
numerically estimated drift and diffusion parameters
of a univariate stochastic system. This has been done
by a straightforward application of the Itô–Taylor ex-
pansion. The derived formulae show that the numeri-
cal estimates of these parameters from data is fraught
with the potential for error. In particular, it has been
shown that it is problematic to detect pure additive
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noise when the sampling period of the data is large
compared to the deterministic timescale. The analyt-
ical results indicate that one should carefully test the
numerically estimated drift and diffusion parameters.
Because it is impossible to know the structure of the
correct termsA(x) and B(x) in advance, the most
practical way to detect the error made by using a fi-
nite time step is to change�t by subsampling the data
and compare the results. That is, the error term pro-
portional to�t has to be small and neglectable for the
used time step.

To conclude, the discussed method is a very useful
tool to analyze timeseries, if one has the potential
for error in mind and, therefore, carefully checks the
results.
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